Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nat Immunol ; 25(4): 644-658, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503922

RESUMEN

The organization of immune cells in human tumors is not well understood. Immunogenic tumors harbor spatially localized multicellular 'immunity hubs' defined by expression of the T cell-attracting chemokines CXCL10/CXCL11 and abundant T cells. Here, we examined immunity hubs in human pre-immunotherapy lung cancer specimens and found an association with beneficial response to PD-1 blockade. Critically, we discovered the stem-immunity hub, a subtype of immunity hub strongly associated with favorable PD-1-blockade outcome. This hub is distinct from mature tertiary lymphoid structures and is enriched for stem-like TCF7+PD-1+CD8+ T cells, activated CCR7+LAMP3+ dendritic cells and CCL19+ fibroblasts as well as chemokines that organize these cells. Within the stem-immunity hub, we find preferential interactions between CXCL10+ macrophages and TCF7-CD8+ T cells as well as between mature regulatory dendritic cells and TCF7+CD4+ and regulatory T cells. These results provide a picture of the spatial organization of the human intratumoral immune response and its relevance to patient immunotherapy outcomes.


Asunto(s)
Neoplasias Pulmonares , Humanos , Linfocitos T CD8-positivos , Receptor de Muerte Celular Programada 1 , Quimiocinas/metabolismo , Inmunoterapia/métodos , Microambiente Tumoral
2.
bioRxiv ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38405985

RESUMEN

A central problem in cancer immunotherapy with immune checkpoint blockade (ICB) is the development of resistance, which affects 50% of patients with metastatic melanoma1,2. T cell exhaustion, resulting from chronic antigen exposure in the tumour microenvironment, is a major driver of ICB resistance3. Here, we show that CD38, an ecto-enzyme involved in nicotinamide adenine dinucleotide (NAD+) catabolism, is highly expressed in exhausted CD8+ T cells in melanoma and is associated with ICB resistance. Tumour-derived CD38hiCD8+ T cells are dysfunctional, characterised by impaired proliferative capacity, effector function, and dysregulated mitochondrial bioenergetics. Genetic and pharmacological blockade of CD38 in murine and patient-derived organotypic tumour models (MDOTS/PDOTS) enhanced tumour immunity and overcame ICB resistance. Mechanistically, disrupting CD38 activity in T cells restored cellular NAD+ pools, improved mitochondrial function, increased proliferation, augmented effector function, and restored ICB sensitivity. Taken together, these data demonstrate a role for the CD38-NAD+ axis in promoting T cell exhaustion and ICB resistance, and establish the efficacy of CD38 directed therapeutic strategies to overcome ICB resistance using clinically relevant, patient-derived 3D tumour models.

3.
Cancer Discov ; 14(5): 766-785, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38319303

RESUMEN

Adding anti-programmed cell death protein 1 (anti-PD-1) to 5-fluorouracil (5-FU)/platinum improves survival in some advanced gastroesophageal adenocarcinomas (GEA). To understand the effects of chemotherapy and immunotherapy, we conducted a phase II first-line trial (n = 47) sequentially adding pembrolizumab to 5-FU/platinum in advanced GEA. Using serial biopsy of the primary tumor at baseline, after one cycle of 5-FU/platinum, and after the addition of pembrolizumab, we transcriptionally profiled 358,067 single cells to identify evolving multicellular tumor microenvironment (TME) networks. Chemotherapy induced early on-treatment multicellular hubs with tumor-reactive T-cell and M1-like macrophage interactions in slow progressors. Faster progression featured increased MUC5A and MSLN containing treatment resistance programs in tumor cells and M2-like macrophages with immunosuppressive stromal interactions. After pembrolizumab, we observed increased CD8 T-cell infiltration and development of an immunity hub involving tumor-reactive CXCL13 T-cell program and epithelial interferon-stimulated gene programs. Strategies to drive increases in antitumor immune hub formation could expand the portion of patients benefiting from anti-PD-1 approaches. SIGNIFICANCE: The benefit of 5-FU/platinum with anti-PD-1 in first-line advanced gastric cancer is limited to patient subgroups. Using a trial with sequential anti-PD-1, we show coordinated induction of multicellular TME hubs informs the ability of anti-PD-1 to potentiate T cell-driven responses. Differential TME hub development highlights features that underlie clinical outcomes. This article is featured in Selected Articles from This Issue, p. 695.


Asunto(s)
Neoplasias Gástricas , Microambiente Tumoral , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/patología , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Masculino , Inmunoterapia/métodos , Fluorouracilo/uso terapéutico , Fluorouracilo/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Femenino , Persona de Mediana Edad , Anciano , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/farmacología
4.
Cancer Res ; 84(2): 184-191, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-37963209

RESUMEN

Plasticity refers to the ability of cells to adopt a spectrum of states or phenotypes. In cancer, it is a critical contributor to tumor initiation, progression, invasiveness, and therapy resistance, and it has recently been recognized as an emerging cancer hallmark. Plasticity can occur as a result of cell-intrinsic factors (e.g., genetic, transcriptional, or epigenetic fluctuations), or through cell-extrinsic cues (e.g., signaling from components of the tumor microenvironment or selective pressure from therapy). Over the past decade, technological advances, analysis of patient samples, and studies in mouse model systems have led to a deeper understanding of how such plastic states come about. In this review, we discuss: (i) the definition of plasticity; (ii) methods to measure and quantify plasticity; (iii) the clinical relevance of plasticity; and (iv) therapeutic hypotheses to modulate plasticity in the clinic.


Asunto(s)
Neoplasias , Animales , Ratones , Humanos , Neoplasias/genética , Neoplasias/patología , Microambiente Tumoral , Transducción de Señal , Fenotipo , Plasticidad de la Célula
5.
Arthritis Rheumatol ; 76(3): 438-443, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37909388

RESUMEN

OBJECTIVE: Giant cell arteritis (GCA) is an age-related vasculitis. Prior studies have identified an association between GCA and hematologic malignancies (HMs). How the presence of somatic mutations that drive the development of HMs, or clonal hematopoiesis (CH), may influence clinical outcomes in GCA is not well understood. METHODS: To examine an association between CH and GCA, we analyzed sequenced exomes of 470,960 UK Biobank (UKB) participants for the presence of CH and used multivariable Cox regression. To examine the clinical phenotype of GCA in patients with and without somatic mutations across the spectrum of CH to HM, we performed targeted sequencing of blood samples and electronic health record review on 114 patients with GCA seen at our institution. We then examined associations between specific clonal mutations and GCA disease manifestations. RESULTS: UKB participants with CH had a 1.48-fold increased risk of incident GCA compared to UKB participants without CH. GCA risk was highest among individuals with cytopenia (hazard ratio [HR] 2.98, P = 0.00178) and with TET2 mutation (HR 2.02, P = 0.00116). Mutations were detected in 27.2% of our institutional GCA cohort, three of whom had HM at GCA diagnosis. TET2 mutations were associated with vision loss in patients with GCA (odds ratio 4.33, P = 0.047). CONCLUSIONS: CH increases risk for development of GCA in a genotype-specific manner, with the greatest risk being conferred by the presence of mutations in TET2. Somatic TET2 mutations likewise increase the risk of GCA-associated vision loss. Integration of somatic genetic testing in GCA diagnostics may be warranted in the future.


Asunto(s)
Dioxigenasas , Arteritis de Células Gigantes , Humanos , Arteritis de Células Gigantes/complicaciones , Mutación , Proteínas de Unión al ADN/genética
6.
bioRxiv ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37066412

RESUMEN

The organization of immune cells in human tumors is not well understood. Immunogenic tumors harbor spatially-localized multicellular 'immunity hubs' defined by expression of the T cell-attracting chemokines CXCL10/CXCL11 and abundant T cells. Here, we examined immunity hubs in human pre-immunotherapy lung cancer specimens, and found that they were associated with beneficial responses to PD-1-blockade. Immunity hubs were enriched for many interferon-stimulated genes, T cells in multiple differentiation states, and CXCL9/10/11 + macrophages that preferentially interact with CD8 T cells. Critically, we discovered the stem-immunity hub, a subtype of immunity hub strongly associated with favorable PD-1-blockade outcomes, distinct from mature tertiary lymphoid structures, and enriched for stem-like TCF7+PD-1+ CD8 T cells and activated CCR7 + LAMP3 + dendritic cells, as well as chemokines that organize these cells. These results elucidate the spatial organization of the human intratumoral immune response and its relevance to patient immunotherapy outcomes.

7.
Cell Rep Med ; 4(4): 101013, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37044094

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has been left behind in the evolution of personalized medicine. Predictive markers of response to therapy are lacking in PDAC despite various histological and transcriptional classification schemes. We report an artificial intelligence (AI) approach to histologic feature examination that extracts a signature predictive of disease-specific survival (DSS) in patients with PDAC receiving adjuvant gemcitabine. We demonstrate that this AI-generated histologic signature is associated with outcomes following adjuvant gemcitabine, while three previously developed transcriptomic classification systems are not (n = 47). We externally validate this signature in an independent cohort of patients treated with adjuvant gemcitabine (n = 46). Finally, we demonstrate that the signature does not stratify survival outcomes in a third cohort of untreated patients (n = 161), suggesting that the signature is specifically predictive of treatment-related outcomes but is not generally prognostic. This imaging analysis pipeline has promise in the development of actionable markers in other clinical settings where few biomarkers currently exist.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gemcitabina , Inteligencia Artificial , Desoxicitidina/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Resultado del Tratamiento , Biomarcadores , Neoplasias Pancreáticas
8.
Nature ; 615(7950): 158-167, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36634707

RESUMEN

Despite the success of PD-1 blockade in melanoma and other cancers, effective treatment strategies to overcome resistance to cancer immunotherapy are lacking1,2. Here we identify the innate immune kinase TANK-binding kinase 1 (TBK1)3 as a candidate immune-evasion gene in a pooled genetic screen4. Using a suite of genetic and pharmacological tools across multiple experimental model systems, we confirm a role for TBK1 as an immune-evasion gene. Targeting TBK1 enhances responses to PD-1 blockade by decreasing the cytotoxicity threshold to effector cytokines (TNF and IFNγ). TBK1 inhibition in combination with PD-1 blockade also demonstrated efficacy using patient-derived tumour models, with concordant findings in matched patient-derived organotypic tumour spheroids and matched patient-derived organoids. Tumour cells lacking TBK1 are primed to undergo RIPK- and caspase-dependent cell death in response to TNF and IFNγ in a JAK-STAT-dependent manner. Taken together, our results demonstrate that targeting TBK1 is an effective strategy to overcome resistance to cancer immunotherapy.


Asunto(s)
Resistencia a Antineoplásicos , Evasión Inmune , Inmunoterapia , Proteínas Serina-Treonina Quinasas , Humanos , Evasión Inmune/genética , Evasión Inmune/inmunología , Inmunoterapia/métodos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Organoides , Factores de Necrosis Tumoral/inmunología , Interferón gamma/inmunología , Esferoides Celulares , Caspasas , Quinasas Janus , Factores de Transcripción STAT
9.
Nat Med ; 29(2): 458-466, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36702949

RESUMEN

While BRAF inhibitor combinations with EGFR and/or MEK inhibitors have improved clinical efficacy in BRAFV600E colorectal cancer (CRC), response rates remain low and lack durability. Preclinical data suggest that BRAF/MAPK pathway inhibition may augment the tumor immune response. We performed a proof-of-concept single-arm phase 2 clinical trial of combined PD-1, BRAF and MEK inhibition with sparatlizumab (PDR001), dabrafenib and trametinib in 37 patients with BRAFV600E CRC. The primary end point was overall response rate, and the secondary end points were progression-free survival, disease control rate, duration of response and overall survival. The study met its primary end point with a confirmed response rate (24.3% in all patients; 25% in microsatellite stable patients) and durability that were favorable relative to historical controls of BRAF-targeted combinations alone. Single-cell RNA sequencing of 23 paired pretreatment and day 15 on-treatment tumor biopsies revealed greater induction of tumor cell-intrinsic immune programs and more complete MAPK inhibition in patients with better clinical outcome. Immune program induction in matched patient-derived organoids correlated with the degree of MAPK inhibition. These data suggest a potential tumor cell-intrinsic mechanism of cooperativity between MAPK inhibition and immune response, warranting further clinical evaluation of optimized targeted and immune combinations in CRC. ClinicalTrials.gov registration: NCT03668431.


Asunto(s)
Neoplasias Colorrectales , Melanoma , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Receptor de Muerte Celular Programada 1/genética , Melanoma/patología , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Neoplasias Colorrectales/genética , Mutación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Piridonas/uso terapéutico , Pirimidinonas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología
10.
Cell Rep Med ; 3(10): 100779, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36208629

RESUMEN

Mechanisms of neutrophil involvement in severe coronavirus disease 2019 (COVID-19) remain incompletely understood. Here, we collect longitudinal blood samples from 306 hospitalized COVID-19+ patients and 86 controls and perform bulk RNA sequencing of enriched neutrophils, plasma proteomics, and high-throughput antibody profiling to investigate relationships between neutrophil states and disease severity. We identify dynamic switches between six distinct neutrophil subtypes. At days 3 and 7 post-hospitalization, patients with severe disease display a granulocytic myeloid-derived suppressor cell-like gene expression signature, while patients with resolving disease show a neutrophil progenitor-like signature. Humoral responses are identified as potential drivers of neutrophil effector functions, with elevated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immunoglobulin G1 (IgG1)-to-IgA1 ratios in plasma of severe patients who survived. In vitro experiments confirm that while patient-derived IgG antibodies induce phagocytosis in healthy donor neutrophils, IgA antibodies predominantly induce neutrophil cell death. Overall, our study demonstrates a dysregulated myelopoietic response in severe COVID-19 and a potential role for IgA-dominant responses contributing to mortality.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Neutrófilos , Inmunoglobulina A , Inmunoglobulina G , Fenotipo
11.
Nat Immunol ; 23(10): 1495-1506, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36151395

RESUMEN

The immune system can eliminate tumors, but checkpoints enable immune escape. Here, we identify immune evasion mechanisms using genome-scale in vivo CRISPR screens across cancer models treated with immune checkpoint blockade (ICB). We identify immune evasion genes and important immune inhibitory checkpoints conserved across cancers, including the non-classical major histocompatibility complex class I (MHC class I) molecule Qa-1b/HLA-E. Surprisingly, loss of tumor interferon-γ (IFNγ) signaling sensitizes many models to immunity. The immune inhibitory effects of tumor IFN sensing are mediated through two mechanisms. First, tumor upregulation of classical MHC class I inhibits natural killer cells. Second, IFN-induced expression of Qa-1b inhibits CD8+ T cells via the NKG2A/CD94 receptor, which is induced by ICB. Finally, we show that strong IFN signatures are associated with poor response to ICB in individuals with renal cell carcinoma or melanoma. This study reveals that IFN-mediated upregulation of classical and non-classical MHC class I inhibitory checkpoints can facilitate immune escape.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico , Evasión Inmune , Interferón gamma/genética , Interferón gamma/metabolismo , Subfamília C de Receptores Similares a Lectina de Células NK
12.
Proc Natl Acad Sci U S A ; 119(34): e2207392119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969771

RESUMEN

Regulatory relationships between transcription factors (TFs) and their target genes lie at the heart of cellular identity and function; however, uncovering these relationships is often labor-intensive and requires perturbations. Here, we propose a principled framework to systematically infer gene regulation for all TFs simultaneously in cells at steady state by leveraging the intrinsic variation in the transcriptional abundance across single cells. Through modeling and simulations, we characterize how transcriptional bursts of a TF gene are propagated to its target genes, including the expected ranges of time delay and magnitude of maximum covariation. We distinguish these temporal trends from the time-invariant covariation arising from cell states, and we delineate the experimental and technical requirements for leveraging these small but meaningful cofluctuations in the presence of measurement noise. While current technology does not yet allow adequate power for definitively detecting regulatory relationships for all TFs simultaneously in cells at steady state, we investigate a small-scale dataset to inform future experimental design. This study supports the potential value of mapping regulatory connections through stochastic variation, and it motivates further technological development to achieve its full potential.


Asunto(s)
Regulación de la Expresión Génica , Modelos Biológicos , Factores de Transcripción , Simulación por Computador , Redes Reguladoras de Genes , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Nat Genet ; 54(8): 1178-1191, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35902743

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal and treatment-refractory cancer. Molecular stratification in pancreatic cancer remains rudimentary and does not yet inform clinical management or therapeutic development. Here, we construct a high-resolution molecular landscape of the cellular subtypes and spatial communities that compose PDAC using single-nucleus RNA sequencing and whole-transcriptome digital spatial profiling (DSP) of 43 primary PDAC tumor specimens that either received neoadjuvant therapy or were treatment naive. We uncovered recurrent expression programs across malignant cells and fibroblasts, including a newly identified neural-like progenitor malignant cell program that was enriched after chemotherapy and radiotherapy and associated with poor prognosis in independent cohorts. Integrating spatial and cellular profiles revealed three multicellular communities with distinct contributions from malignant, fibroblast and immune subtypes: classical, squamoid-basaloid and treatment enriched. Our refined molecular and cellular taxonomy can provide a framework for stratification in clinical trials and serve as a roadmap for therapeutic targeting of specific cellular phenotypes and multicellular interactions.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/terapia , Perfilación de la Expresión Génica , Humanos , Terapia Neoadyuvante , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Pronóstico , Transcriptoma/genética , Neoplasias Pancreáticas
14.
J Clin Med ; 11(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35566707

RESUMEN

The following study aimed to systematically review and meta-analyse the literature on the relations between markers of nutritional status and long-term mortality, recurrence and all-cause hospital readmission following myocardial infarction (MI). Medline, EMBASE and Web of Science were searched for prospective cohort studies reporting the relationship between anthropometric and biochemical markers of nutritional status and nutritional assessment tools on long-term mortality, recurrence and all-cause hospital readmission in adult patients with an MI. Two reviewers conducted screening, data extraction and critical appraisal independently. Random-effects meta-analysis was performed. Twenty-seven studies were included in the qualitative synthesis and twenty-four in the meta-analysis. All eligible studies analysed BMI as their exposure of interest. Relative to normal weight, mortality was highest in underweight patients (adjusted Hazard Ratio (95% confidence interval): 1.42 (1.24-1.62)) and lower in both overweight (0.85 (0.76-0.94)) and obese patients (0.86 (0.81-0.91)), over a mean follow-up ranging from 6 months to 17 years. No statistically significant associations were identified between different BMI categories for the outcomes of recurrence and hospital readmission. Patients with low BMI carried a significant mortality risk post-MI; however due to the known limitations associated with BMI measurement, further evidence regarding the prognostic utility of other nutritional markers is required.

15.
Nutr Rev ; 80(12): 2275-2287, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-35640017

RESUMEN

CONTEXT AND OBJECTIVE: The impact of existing malnutrition on stroke outcomes is poorly recognised and treated. Evidence was systematically reviewed and quantified by meta-analysis. METHODS: MEDLINE, EMBASE and Web of Science were searched from inception to 11 January 2021 and updated in July. Prospective cohort studies, in English, evaluating anthropometric and biomarkers of nutrition on stroke outcomes were included. Risk of bias was assessed using the Scottish Intercollegiate Guidelines Network checklist. RESULTS: Twenty-six studies (n = 156 249) were eligible (follow-up: One month-14 years). Underweight patients had increased risk of long-term mortality (adjusted hazard ratio = 1.65,1.41-1.95), whilst overweight (0.80,0.74-0.86) and obese patients (0.80,0.75-0.85) had decreased risk compared to normal weight. Odds of mortality decreased in those with high serum albumin (odds ratio = 0.29,0.18-0.48) and increased with low serum albumin (odds ratio = 3.46,1.78-6.74) compared to normal serum albumin (30-35 g/L). Being malnourished compared to well-nourished, as assessed by the Subjective Global Assessment (SGA) or by a combination of anthropometric and biochemical markers increased all-cause mortality (odds ratio = 2.38,1.85-3.06) and poor functional status (adjusted odds ratio = 2.21,1.40-3.49). CONCLUSION: Nutritional status at the time of stroke predicts adverse stroke outcomes.


Asunto(s)
Desnutrición , Accidente Cerebrovascular , Humanos , Estado Nutricional , Estudios Prospectivos , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/complicaciones , Albúmina Sérica/análisis
17.
Am J Respir Crit Care Med ; 205(5): 507-519, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34878969

RESUMEN

Rationale: Alveolar and endothelial injury may be differentially associated with coronavirus disease (COVID-19) severity over time. Objectives: To describe alveolar and endothelial injury dynamics and associations with COVID-19 severity, cardiorenovascular injury, and outcomes. Methods: This single-center observational study enrolled patients with COVID-19 requiring respiratory support at emergency department presentation. More than 40 markers of alveolar (including receptor for advanced glycation endproducts [RAGE]), endothelial (including angiopoietin-2), and cardiorenovascular injury (including renin, kidney injury molecule-1, and troponin-I) were serially compared between invasively and spontaneously ventilated patients using mixed-effects repeated-measures models. Ventilatory ratios were calculated for intubated patients. Associations of biomarkers with modified World Health Organization scale at Day 28 were determined with multivariable proportional-odds regression. Measurements and Main Results: Of 225 patients, 74 (33%) received invasive ventilation at Day 0. RAGE was 1.80-fold higher in invasive ventilation patients at Day 0 (95% confidence interval [CI], 1.50-2.17) versus spontaneous ventilation, but decreased over time in all patients. Changes in alveolar markers did not correlate with changes in endothelial, cardiac, or renal injury markers. In contrast, endothelial markers were similar to lower at Day 0 for invasive ventilation versus spontaneous ventilation, but then increased over time only among intubated patients. In intubated patients, angiopoietin-2 was similar (fold difference, 1.02; 95% CI, 0.89-1.17) to nonintubated patients at Day 0 but 1.80-fold higher (95% CI, 1.56-2.06) at Day 3; cardiorenovascular injury markers showed similar patterns. Endothelial markers were not consistently associated with ventilatory ratios. Endothelial markers were more often significantly associated with 28-day outcomes than alveolar markers. Conclusions: Alveolar injury markers increase early. Endothelial injury markers increase later and are associated with cardiorenovascular injury and 28-day outcome. Alveolar and endothelial injury likely contribute at different times to disease progression in severe COVID-19.


Asunto(s)
Células Epiteliales Alveolares , COVID-19/fisiopatología , Endotelio/lesiones , Gravedad del Paciente , Alveolos Pulmonares/lesiones , Síndrome de Dificultad Respiratoria/fisiopatología , Adulto , Anciano , Biomarcadores/análisis , Resultados de Cuidados Críticos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sistema Renina-Angiotensina , Respiración Artificial , SARS-CoV-2
18.
Cancer Discov ; 12(4): 984-1001, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34933901

RESUMEN

Chemotherapy is ubiquitous in first-line treatment of advanced gastric cancer, yet responses are heterogeneous, and little is known about mediators of chemotherapy response. To move forward, an understanding of the effects of standard chemotherapy on the tumor-immune microenvironment (TME) is needed. Coupling whole-exome sequencing, bulk RNA and single-cell transcriptomics from paired pretreatment and on-treatment samples in treatment-naïve patients with HER2-positive and HER2-negative gastric cancer, we define features associated with response to platinum-based chemotherapy. Response was associated with on-treatment TME remodeling including natural killer (NK) cell recruitment, decreased tumor-associated macrophages, M1-macrophage repolarization, and increased effector T-cell infiltration. Among chemotherapy nonresponders, we observed low/absent PD-L1 expression or modulation, on-treatment increases in Wnt signaling, B-cell infiltration, and LAG3-expressing T cells coupled to an exodus of dendritic cells. We did not observe significant genomic changes in early on-treatment sampling. We provide a map of on-treatment TME modulation with standard chemotherapy and nominate candidate future approaches. SIGNIFICANCE: Using paired pretreatment and on-treatment samples during standard first-line chemotherapy, we identify chemotherapy-induced NK-cell infiltration, macrophage repolarization, and increased antigen presentation among responders. Increased LAG3 expression and decreased dendritic cell abundance were seen in nonresponders, emphasizing remodeling of the TME during chemotherapy response and resistance. This article is highlighted in the In This Issue feature, p. 873.


Asunto(s)
Neoplasias Gástricas , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Genómica , Humanos , Platino (Metal)/farmacología , Platino (Metal)/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...